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A stability theorem is established for steady motions of non-holonomic Chaplygin systems, with cyclic coordinates, acted upon 
by potential and dissipative forces, generalizing a previously proved theorem [ 11. The theorem enables rigorous sufficient conditions 
for the stability of steady motions of non-holonomic systems to be derived in cases that are more general than those considered 
hitherto. As an example, the problem of the stability of the steady motions of a one-wheeled carriage is considered. 0 2002 Elsevier 
Science Ltd. All rights reserved. 

For a survey of results on the theory of the stability of the steady motions of non-holonomic systems 
see [2, 31. 

1. STEADY MOTIONS 

Consider a non-holonomic mechanical system whose state is defined by generalized coordinates ql, . . . , 
qn. The velocities &, . . . , L&, are subject to n - 1 (I c n) time-independent non-holonomic constraints 

It is assumed that the system is acted upon by potential forces, which are the derivatives of a force 
function U, and by dissipative forces, which are the derivatives of a Rayleigh function F. We will assume 
that the kinetic energy T, the force function U, the function F and the coefficients b, are independent 

of 4x. 
The equations of motion of the system in Chaplygin form are, as is well known [l-4] 

(1.2) 

where 0, ox and @ are the results of eliminating the velocities & by using (l.l), from the expressions 
for T, dTl&j, and F, that is 

28 = i ~,&?k&& 8, = i: @& 
r.s=l s=l 

2@= i f,(q)&&* vxrs =--- 
$, a$$ 

r.s= I a4, a4, 

Equations (1.2) constitute a closed system in the variables ql, . . . , ql, which can be investigated 
independently of the equations of the non-holonomic constraints (1.1). 

We will assume that among the coordinates ql, . . . , qr there are cyclic coordinates qa (a = k + 1, . . . , 
1) in the sense of the definition in [l, 21, that is 

ae 
-=() 

aqa 
3 $$IB,V,,=O. $-=O, e=O; p,s,r=l,..., 1 

aX + a a 

The other coordinates qi (i = 1, . . . , k) are positional coordinates. 
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In the context of this definition of cyclic coordinates, steady motions may exist, in which the positional 
coordinates and the cyclic velocities are constant 

4i(r) = qil)? 4ri(t)=O, i=l,.... k; &(t)=(jaO=w,, a=k+l,..., I (1.3) 

A necessary condition for the existence of steady motions (1.3) is that there must be no dissipation 
with respect to the cyclic velocities, that is 

awad, =O, or=k+l,...,I 

In that case the 1 constants qio and o, satisfy the 1 equations 

The subscript zero means that the expression is evaluated for steady motion. 
It has been observed [2, 31 that system (1.4) (1.5) generally has only trivial solutions 

% = 0, qi(f) = qio (qio : au/aqi = 0) 

corresponding to equilibrium positions of the system. In some cases, however, it may happen that only 
Ii (2i < I) of Eqs (1.4) and (1.5) are independent, in which case system (1.4), (1.5) may have non-trivial 
solutions &. The mechanical system under consideration may then have an (I - Ii)-dimensional family 
of steady solutions (1.3). 

If the condition 

E @ &rp)o = - x=,+, xavxvuh.,, i (0 y=k+L...,f 
x=1+1 

(1.6) 

is satisfied, then condition (1.5) is satisfied for any w,. Then the system admits of a manifold of steady 
solutions of dimension no less than the number of cyclic coordinates I- k. Condition (1.6) is satisfied, 
in particular, if 

$+? xaV~h =Q a,by=k+l,...,l 

Obviously, a sufficient condition for (1.7) to hold is that [l-3] 

Xa~Xfi=O, a,p,y=k+l,..., I 

(1.7) 

(1.8) 

Note that conditions (1.8) hold identically with respect to the positional coordinates, but conditions 
(1.7) hold only in steady motion. 

This last situation (conditions (1.8) hold) ’ p is recisely that arising in the well-known problems of the 
steady motions of a heavy rigid body (a disk, torus, etc.) on an absolutely rough horizontal plane. In 
the example presented below, conditions (1.8) will fail to hold, but conditions (1.7) will be satisfied. 

2. STABILITY ANALYSIS 

Consider an arbitrary point of the manifold of steady motions (1.4) (1.5) and let us investigate the 
problem of whether solution (1.3) is stable with respect to perturbations of the variables qi, 4i and da. 

We introduce the deviations 

xi =qi -qiOv Y~=&-w~, i=l,..., k; a=k+l,..., I 
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and write down the equations of perturbed motion in matrix form, with the linear terms isolated 

A_?+cjJ= w,x+D,x+qy+x(x,x,y) 

CTi + Bj = W,x + D+ + P2y + Y(x, i, y) 
(2.1) 

where x(k x l), y(s x 1); s = I- k. The formulae for the elements of the matrices A, B, . . . are similar 
to the corresponding formulae in [2]; X and Y are vector-valued functions containing terms of order 
greater than one in the variables just introduced. 

When condition (1.8) is satisfied, W, = 0 and Pz = 0. When conditions (1.6) or (1.7) are satisfied, 
only Pz = 0. 

It is obvious that if all the roots of the characteristic equation of the linearized system (2.1) are in 
the left half-plane, then the trivial solution of system (2.1) is asymptotically stable, but if at least one 
root is in the right-half-plane, it is unstable. 

If W, = 0 and Pz = 0, system (2.1) has s zero roots and s linear integrals. It has been shown [l, 21 
that this situation corresponds to the special critical case, in Lyapunov’s sense, of several zero roots. 
Under the conditions specified above, the Lyapunov-Ma&in theorem [S, 61 has been used to established 
a stability theorem for the steady motion (1.3) [l]. 

We shall show that, under certain conditions, a similar theorem will hold for Chaplygin systems of 
more general form, possessing as s-dimensional manifold of steady motions. In that case the linearized 
system will also have s zero roots and s linear integrals (one s-dimensional vector integral), but on the 
other hand W, f 0 and Pz # 0. 

Let us find the conditions under which such a vector linear integral in the linearized system (2.1) 
exists. Introducing matrices L(s x k) and M(s x s), one readily sees that, if a non-trivial solution L, M 
of the system of matrix equations 

LW, +MW2=0, LP,+MP2=0 (2.2) 

exists, then the linearized system (2.1) has an (s x 1)-dimensional vector linear integral, of the form 

z = (LA + MCT)i+(LC+ M&y-(LD, + MD,)x = const (2.3) 

System (2.2) has a non-zero solution if 

A=det w, 4 H II w, P2 = 
0 (2.4) 

This condition is satisfied, in particular, if W, = 0 and P2 = 0 (see [l, 21). 
Let det WI f 0. Then it follows from system (2.2) that L = -MW,W;‘, MP, = 0, where PO = 

P2 - W, W;‘P1. We have M f 0 if det PO = 0 (0 s rank PO < s). 
A necessary condition for eliminating the variable y using integral (2.3) is that rank G = s, where 

G=LC+MB=MBo, B, = B- W,b+Z 

and moreover rank G s min {rank M, rank &,I. Since rank M c s, the matrix M must be non-singular, 
and it follows from the relation MP, = 0 that PO = 0, that is 

P2 = w,w,-‘fi (2.5) 

Then rank G = rank B,, = s and the condition for y to be eliminated from integral (2.3) is that 

det B, = det (B - W, q-‘C) f 0 (2.6) 

As the matrix44 we can take the identity matrix, and L = -W,W;‘; G = B,,. 
Making the change of variables 

y = 4’ (z + D,,x - C;i) 

we can reduce Eqs (2.1) to the form 

(2.7) 
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~X+D,~+Ww,x-F;B,-‘z=X,(x,i,z), i=Z,(x,i,z) (2.8) 

where 

A,, = A-C&k& D,, = 4, + f&C; -t C&-‘0, 

w, = -W, - fl&-‘DJ, C,T = CT - W, W;' A, 4 = 02 - W, W,-‘0, 

The functions X0(x, i’, z) and Y&x, i, z) are formed from the functions X(x, i’, z) and Y(x, i, z) using the 
change of variables (2.7). 

Obviously, the characteristic equation of the linearized system (2.8) will always have s zero roots, 
while the remaining roots will satisfy the equation 

det (A&* + D&L + WO) = 0 (2.9) 

If one of the roots of Eq. (2.9) has a positive real part, steady motion (1.3) is unstable by Lyapunov’s 
theorem on instability in the first approximation. Since under the conditions specified above the number 
of zero roots is precisely the number of dimensions of the manifold of steady motions (1.3) (just as in 
the case considered in [l]), it follows that, if all the roots of Eq. (2.9) have negative real parts, this is 
the special critical case of several zero roots and the Lyapunov-Malkin theorem holds. 

We have thus established a proposition similar to a theorem formulated in [l]. 

Theorem. A steady motion (1.3) of a non-holonomic Chaplygin system, possessing a manifold of steady 
motions of dimensionality equal to the number of cyclic coordinates, is stable (unstable) if all the roots 
of Eq. (2.9) have negative real parts (there is at least one root with positive real part). In the stable 
case, any perturbed motion sufficiently close to the unperturbed motion will tend to one of the possible 
steady motions in the aforementioned manifold as t + m . 

3. THE STEADY MOTIONS OF A MONOCYCLE 

Consider a mechanical system modelling a one-wheeled controllable carriage moving on a fixed 
horizontal plane [7, 81. The system consists of a homogeneous circular disk of mass ml and radius b, 
rolling without slipping on a plane, of a rigid body M2 attached at the centre of the disk Oi by a cylindrical 
hinge and moving in the plane of the disk; the body axis Oiq’ lies in the plane of the disk and is a principal 
axis of inertia of the body M2 for the point 0,. Let 02, the centre of mass of the body M2, lie on the 
axis 02rl’(0102 = d). Mounted on this same axis is a homogeneous symmetrical flywheel, whose centre 
of mass coincides with Oz. Let m2 denote the mass of the body M2 together with the flywheel. 

A simpler model of a monocycle, consisting of a disk, a weightless rod and a ball revolving around 
it, was considered in [9]. 

To describe the motion of the system, let us introduce a fixed system of coordinates OXYZ with origin 
at some point of the support plane (the Z axis points vertically upwards) and a half-attached system of 
coordinates O,@-l< with origin at the centre of mass 0, of the disk: the 6 axis is perpendicular to the 
plane of the disk and the r-l axis points along the straight line of maximum inclination of the plane of 
the wheel (upwards). The position of the system is defined by generalized coordinates X, Y, 8, w, cp, 
cpl, CI, where X and Y are the horizontal coordinates of the centre of mass of the disk, 8, v and cp are 
the Euler angles defining the position of the disk, cpl is the angle between the axes 01~ and Oiq’, which 
characterizes the position of the O~TJ’ axis of the body M2, the third coordinate of the centre of mass 
of the disk is Z = b cos 8 and c1 is the angle of rotation of the flywheel (rotor) relative to the body M2. 
The vectors & and $I point along the Otr~’ and O,< axes, respectively. 

The equations of the non-holonomic constraints express the no-slip conditions (the velocity of the 
point P of the disk at which it is in contact with plane is zero) and have the form 

X+b[C)sin~cos9+(cj,+Qsin0)cos\y]=O 

P+b[-6cos~cos8+(3,+~sinB)sin~]=O 
(3.1) 

The expressions for the kinetic energy of the carriage and the force function in generalized coordinates 
were presented in [7]. 
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F = h,cl,:/2 (hi = const > 0), that model the forces of viscous friction in the wheel axis. 
The kinetic energy and force function of the system, as well as the coefficients of the non-holonomic 

constraints (3.1) are independent of the X and Y coordinates; hence the system is a Chaplygin system 
and its equations of motion, set up in the form of Chaplygin’s equations, may be investigated 
independently of the constraint equations (3.1). The coordinates cp, ill and a are cyclic in the sense of 
the definition in [2]. 

The equations of motion admit of particular solutions 

‘p, =(P,a, 4, =o, e=e,, 6=0, @=&=o, @=@a=R, d!=n, 

that describe steady motions of the system. 
The conditions for steady motion (3.2) to exist are 

[Iz~in9,,oSZ+[1.zsin280+(B2-A2)c~~200~~~~,0]~2+ 

+IRc;L, cost&J -m2dgcos80}sin~,o =0 

(3.2) 

(3.3) 

CORwcOse, +[(m, +m2)a+~dcosfplo]gsine0 -If2,Rsine0coscp,0 + 

+[C, + C, -A - 82 cos’ (p10 -A, sin* ‘p10 + I2 coscpl,,]R2 sine,, coseO = 0 

I2 sin cp,&* = 0, I2 sin cp,&w = 0 

(3.4) 

(3.5) 

where 

A2 = Al + m2dz, B2 = B,, C2 = Ci + mzdz. Ca = C + (ml + m2)b2 + 12 cos cplo, 12 = m&i 

A = B and C are the principal central moments of inertia of the disk about the diameter and an axis 
perpendicular to the plane of the disk, Bi, Ar and Ci are the principal central moments of inertia of 
the body MZ (together with the attached rotor) about the axes OZrl’, O&‘, O,<’ (the O,c’ axis is 
perpendicular to the plane of the disk and the O&,’ axis lies in the plane of the disk), I is the moment 
of inertia of the rotor about the axis of rotation. 

Equations (3.5) correspond to the group of conditions (1.5). It follows from Eqs (3.3)-(3.5) that a 
necessary condition for the existence of steady motions is that sin cpio = 0, which indeed guarantees 
satisfaction of condition (1.7) and thereby also of condition (1.5) for any values of the cyclic velocities. 
It is important to observe that condition (1.8) does not hold in this problem. 

Thus, in this problem a manifold of steady motions of dimension s = 3 exists, and moreover the 
parameters f&,, w, Q and 9, are related by (3.4), in which sin cplo = 0. 

The condition sin cplo = 0 shows that in any steady motion the axis of the body MZ (the axis of the 
main body of the carriage) must coincide with the straight line of maximum inclination of the wheel. 
When that is the case, the centre of mass O2 of the body M2 lies above the centre of the wheel 0, if 
cplo = 0 (E = 1) and below it if (plo = 7~ (E = -1). 

A few of the steady motions deserve special mention. 
1. O. = 0, ci, = w f 0, $ = Q = 0, & = 52, - rolling of a vertical disk in a straight line, with the centre 

of mass Oi of the disk moving at an arbitrary constant velocity 1 oa 1; the point 02, as before, lies on 
the vertical diameter of the disk. 

2. e. = 0, ci, = w = 0, $ = 52 f 0, & = 51, - rotation of the disk at an arbitrary constant angular 
velocity L2 about a fixed vertical diameter (spinning); the centre of mass O2 is also on the vertical 
diameter. 

In the general case, when 

e,#o, 1e,Id2, @=w, \jr=mo, dr=~, 

steady motion of the system is motion of the disk at a constant angle of inclination to the support plane; 
the centre of mass Oi of the disk and the point of contact P with the plane move around circles of fixed 
radius; the centre of mass of the body M2 is on the straight line of maximum inclination of the wheel. 

The equations of perturbed motion, linearized in the neighbourhood of the steady motion (3.2) have 
the form corresponding to (2.1) [7] 
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W,,~+W,*~+~,~++,*X+qy=o, W,,.?+ Wz2j+ Vz,et+K2,x =0 

x=(x,x*)T, Y = CVLY2Y3)r 

xt =‘9i -‘pia* x*=9-8,, y, =+-0, yz =+-a, y, =&--n, 

w, I w,2 
(2x2) (2x3) 

w,l w,2 
(3x2) (3x3) 

= 

h1 

-VI2 

: 0 

0 

0 

41 
(2X2) = 

5, 
(3x2) 

VI 0 WI3 WI4 0 

0 w2* 0 0 0 

WI3 0 w33 w34 0 

WI4 0 w34 w44 w45 

0 0 0 w54 w55 

VI2 
II II k II 0 II 

0 k22 

‘52 0 0 

P21 P22 P23 

(3.6) 

The expressions for the matrix coefficients may be found in [7]. 
The conditions (2.5) and (2.6) for linear integrals to exist are satisfied, because 

P2 =o, w,w,-‘F; =o 

Note that for an arbitrary steady motion (3.2) we have W2 # 0, but in rectilinear motion W2 = 0 and 
P2 = 0. In the latter case, linear integrals (2.3) correspond directly to cyclic variables, as in [l]. 

According to what was stated in Section 2 system (3.6) may be reduced to a linearized system 
corresponding to (2.8). The characteristic equation (2.9) in this case has the form 

aoh +a,h3 +a2h2 +a3h+a4 =0 

It is not difficult to work out expressions for the coefficients ai in terms of the parameters of the system, 
but they will not be given here, as they are rather lengthy. 

Earlier treatments [7] presented only the necessary conditions for the steady motions of the system 
to be stable and indicated the possibility of gyroscopic stabilization of some of them in the absence of 
dissipation. 

According to the theorem proved in Section 2, a steady motion (3.1) is stable if the well-known Hurwitz 
conditions are satisfied 

Ui > 0, i=l ,...,4; ala2a3 -afa4 -%a: >O (3.7) 

For rectilinear rolling of the system, conditions (3.7) are simplified and become suficient conditions 
for stability 

h,>O, E=-1 (q. =R), 02>o;, co: = (A;t~;~2m~;--;d), m=m,+m2 
2 

These conditions mean that the centre of mass of the body MZ (together with the rotor) lies below the 
centre of the wheel, and that the velocity of rolling is fairly high. If E = 1 (cp10 = 0) or E = -1 (cplo = n) 
and w2 c o?, then rectilinear rolling is unstable, since in these cases the coefficients a3 and a4 of the 
characteristic equation have different signs. In particular, if cp,,, = 0, rectilinear rolling is always unstable, 
as observed in [9] for a simpler monocycle model. 
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Now let the steady motion be spin around the vertical at a constant velocity Sk Then a0 > 0, al > 0 
for hr > 0. 

We will now present asymptotic formulae (as Q, + -) for the coefficients u2, a3 and u4, on the 
assumption that the spinning velocity of the rotor S2L, is fairly high 

a2=12R~+...>0, aj=Ihl&Q,+ . . . . a4=12SZ2@+...>0 

In this case the sufficient conditions (3.7) for stable spinning become EQQ > 0, for any values of 
the geometrical and mass parameters of the system. This means that, in stable spinning, the directions 
of spin of the system at velocity !2 and of the spinning of the rotor at velocity Q, must be compatible 
with the position of the centre of mass of the body M2 relative to the centre of the disk (E = f 1). 

In the case that the disk is weightless (more precisely, the mass of the disk is much less than that of 
the body M2) and the body M2 may be considered in calculations as a point mass, conditions (3.7) may 
be expressed as 

(4-%X4-4,)>0* ti >O* 4(4-qo)fi>O* 4(4-42).63>0 - (3.8) 

where we have introduced the following dimensionless quantities 

fi =q2+Giq+Ri, i = 1,2,3; q = E(IRR, - m2gd) f(m2b2R2) 

qo = tj2, (I) =y-(1 + &6)2, 92 = -&6Y 

G, =-y+(1+&6), R, =-(I + &ti)@y 

G2=2&6y+(1 +~8), R2=-ya2(1 +&6-y) 

G3=(1+&6)-y(l-EQ, R3 = eGYI_Y + (1 + &a)(2 + Es)] 

6 = d/b, y = gl(bR2) 

Let 6 = 1 (d = b), E = + 1. Then the stability conditions (3.8) are satisfied in the following cases 

if IQ!& > 2m2gb, for Q2 < glb 

(3.9) 
if /RR,> m2b(g + bQ2), for Q2 > glb 

Obviously conditions (3.9) can only be satisfied if the system and the rotor are spinning in the same 
sense. 

Conditions (3.9) may be expressed in the following equivalent form 

Dr1211z -4mib3g>0, R, <R<R, (3.10) 

where 

Q, = 2m2bgl(I~,), R2 =(Q +&)l(2m2b2) 

Similar stability conditions may be derived for the case when 6 = 1 and E = -1. 

Remark. Conditions (3.10) are similar to the conditions for the stability of the steady motion of a gyroscope in 
gimbals, which is uniform rotations about the vertical of the outer ring at an angular velocity 52 and of the gyroscope 
at an angular velocity sl, [ 10, 111. 

This research was partial by supported by the Russian Foundation for Basic Research (00-01-00391) 
and the “Universities of Russia” Programme (991736). 
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